

PG-08085-001_v08

DOCUMENT CHANGE HISTORY

Version Date Authors Description of Change
1.0 2016/6/10 Vu/CC Initial release
2.0 2017/2/15 SM Update for SDK8.0

NVIDIA VIDEO DECODER INTERFACE

PG-08085-001_v08 | 2

TABLE OF CONTENTS

Chapter 1. OVeIVIEWeiiiiiiiiiiiiiiiittetetereteneteratenntesasesnsesnsennsennsennsennsennscnnsens 1
3P A oo [T ol J YU o] o Yo o W PSPPSRt 2
Chapter 2. Video Decoder Capabilities........c.cccvviiiiiiiiiiiiiiiiiiieieiieieinneeersneeennneees 1
Chapter 3. Video Playback and Decoder Pipeline........ccccveiiiiiiiiiinieineieinnerennneees 3
I R B 1= Tolo o (<) ol o = o T T PP 4
Chapter 4. NVIDIA Video Decoder (NVDECODE) API........cccoeieetiiieieinnerennnecennneees 6
4.1 VidE0 DECOAET APIS ..untiitiiiiiiii i ettt et ettt e et et e eteeeteaaeaaeaseasensensensennens 6
4.2 Querying decode capabailitiescouiiiiiiiiii i e 7
NG N ® 1=Y- 1] o [o - T D<ol oo /=] S PP 7
4.4 DECOAING SUMACES .. uetiiiiiie ittt ettt ettt et e eeeeeaseateaseasenseasensensensans 9
4.5 Processing and Displaying Framescccueiieiiitiiitiiiiiieieieeieeieeareeneeenseennenns 11
4.6 Writing an Efficient Decode-Display Applicationcccvieiiiiiiiiiiiiiiiiiiiiiieeeeeaeens 13

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 3

LIST OF FIGURES

Figure 1. Video decoder pipeline using NVDECODE APIcccivviiiiiiiiiiiiiiininnnenn. 4

LIST OF TABLES

Table 1. Hardware Video Decoder Capabilities........c.ccoviiiiiiiiiiiiiiiiiiiii i 1

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 4

Chapter 1.
OVERVIEW

NVIDIA GPUs - beginning with the Fermi generation - contain a video decoder engine
(referred to as NVDEC in this document) which provides fully-accelerated hardware
video decoding capability. NVDEC can be used for decoding bitstreams of various
formats: H.264, HEVC (H.265), VP8, VP9, MPEG-1, MPEG-2, MPEG-4 and VC-1. NVDEC
runs completely independent of compute/graphics engine.

NVIDIA provides software API and libraries for programming NVDEC. The software
API, hereafter referred to as NVDECODE API lets developers access the video decoding
features of NVDEC and interoperate NVDEC with compute and graphics.

NVDEC decodes the compressed video streams and copies the resulting YUV frames to
video memory. With frames in video memory, video post processing can be done using
CUDA. Decoded video frames can either be presented to the display with graphics
interoperability for video playback, or frames can be passed directly to a dedicated
hardware encoder (NVENC) for high-performance video transcoding.

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 1

1.1 CODECS SUPPORT

The API is supported on Windows and Linux and works in conjunction with NVIDIA’s
CUDA, graphics, and encoder capabilities. The codecs supported by NVDECODE API
are:

MPEG-1,
MPEG-2,
MPEG4,

VC-1,

H.264 (AVCHD),
H.265 (HEVC)
VP8,

VP9.

VvV V V V V VYV VYV V

Please refer to Chapter 2 for complete details about the video capabilities for various
GPUs.

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 2

Chapter 2.
CAPABILITIES

VIDEO DECODER

Table 1 shows the codec support and capabilities of the hardware video decoder for each
GPU architecture.

Table 1. Hardware Video Decoder Capabilities

Baseline, Main,
High profile up
to Level 5.1

GPU MPEG-1 & VC-1 & H.264/AVCHD | H.265/HEVC VP8 VP9
Architecture | MPEG2 Aiiage
Fermi Maximum Maximum Maximum Unsupported Unsupported Unsupported
(GF1xx) Resolution: Resolution: | Resolution:
4080x4080 2048x1024 | 4096x4096
1024x2048 | Profile:
Baseline, Main,
High profile up
to Level 4.1
Kepler Maximum Maximum Maximum Unsupported Unsupported Unsupported
(GK1xx) Resolution: Resolution: | Resolution:
4080x4080 2048x1024 | 4096x4096
1024x2048 | Profile:
Main, High
profile
up to Level 4.1
Maxwell Gen 1 | Maximum Maximum Maximum Unsupported Unsupported Unsupported
(GM10x) Resolution: Resolution: | Resolution:
4080x4080 2048x1024 | 4096x4096
1024x2048 | Profile:

NVIDIA VIDEO DECODER INTERFACE

PG-08085-001_v08 | 1

GPU MPEG-1 & VC-1 & H.264/AVCHD | H.265/HEVC VP8 VP9
Architecture | MPEG-2 HUEECE
Second Maximum Maximum Maximum Unsupported Maximum Unsupported
generation Resolution: Resolution: | Resolution: Resolution:
Maxwell 4080x4080 2048x1024 | 4096x4096 4096x4096
(GM20x, 1024x2048 | Profile:
except GM206) Baseline, Main,
Max High profile up
bitrate: 60 | to Level 5.1
Mbps
GM206 Maximum Maximum Maximum Maximum Maximum Maximum
Resolution: Resolution: | Resolution: Resolution: Resolution: Resolution:
4080x4080 2048x1024 | 4096x4096 4096x2304 4096x4096 4096x2304
1024x2048 | Profile: Profile: Profile:
Baseline, Main, Main profile up Profile 0
High profile up to Level 5.1
to Level 5.1 and main10
profile
GP100 Maximum Maximum Maximum Maximum Maximum Maximum
Resolution: Resolution: | Resolution: Resolution: Resolution: Resolution:
4080x4080 | 2048x1024 | 4096x4096 4096x4096 4096x4096 4096x4096
1024x2048 Profile: Profile: Profile:
Baseline, Main, Main profile up Profile 0
High profile up to Level 5.1,
to Level 5.1 main10 and
main12 profile
GP10x Maximum Maximum Maximum Maximum Maximum Maximum?
Resolution: Resolution: | Resolution: Resolution: Resolution: Resolution:
4080x4080 | 2048x1024 | 4096x4096 8192x8192 4096x4096' 8192x8192
1024x2048 Profile: Profile: Profile:
Baseline, Main, Main profile up Profile 0, 10-
High profile up to Level 5.1, bit and 12-
to Level 5.1 main10 and bit decoding
main12 profile

1 Supported only on GP104

2 VP9 10-bit and 12-bit decoding is supported on select GP10x GPUs

NVIDIA VIDEO DECODER INTERFACE

PG-08085-001_v08 | 2

Chapter 3. VIDEO PLAYBACK AND
DECODER PIPELINE

Sample applications® NvDecodeD3D9 (DirectX 9), NvDecodeD3D11 (DirectX 11) and
NvDecodeGL (OpenGL on Windows and Linux), included in the SDK package,
demonstrate the following functions in a typical video playback application:

1.

A L T

Parsing the video input source.

Querying the decode capabilities.

Decoding video bitstream on GPU using NVDECODE APL
Converting decoded YUV surface NV12/P016 format to RGBA.
Mapping RGBA surface to DirectX 9.0 or OpenGL texture.

Drawing texture to screen.

Sample application NvTranscoder included in the SDK package demonstrates how to set
up an end-to-end video transcode pipeline using NVDECODE and NVENCODE APIs,
with following functions:

1.

Parsing the video input source.

2. Decoding video bitstream on GPU using NVDECODE APL
3.
4

Sending YUV video frame to hardware video encoder using the NVENCODE APL

. Getting back compressed video bitstream in system memory for further processing.

3 Location: ./Samples in the Video Codec SDK package

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 3

3.1 DECODER PIPELINE

Client Application

Decoded
frames

Video Bitstream
—>

Source Parser

[Non-NVIDIA Component
[] optional NVIDIA Component (Software)
B nvIDIA Component (GPU hardware-accelerated)

Video memory

Figure 1. Video decoder pipeline using NVDECODE API

Figure 1 shows the decoder pipeline using NVDECODE API. The solid black lines show
the data flow between modules. The solid colored lines represent process flow.

1.

The application thread (referred to as the primary thread) calls
cuvidCreateVideoSource (), which spawns a de-multiplexer thread (referred to as
the secondary thread).

The primary thread (colored in blue above) calls cuvidCreatevideoParser () to
create the parser. It also creates the decoder by calling cuvidCreatebecoder ().

. The secondary thread (colored in red above) makes the following callbacks given that

the function pointers are not NULL. The callbacks are serial:

a) Handle video data: The callback implementation calls cuvidParsevideoData ()
to parse the video data.

b) Handle video sequence: The callback is made when there is sequence change.

c) Handle picture decode: The callback implementation calls
cuvidDecodePicture () to decode the frame.

d) Handle Picture Display: The callback implementation signals the primary thread
to display the picture.

The primary thread calls cuvidMapvideoFrame () to get the pitch and CUDA device
pointer to the surface which contains the decoded/post-processed frame. Thereafter it
calls cuvidUnmapVideoFrame () as the complimentary operation.

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 4

5. The primary thread destroys the resources by calling cuvidbestroyDecoder (),

cuvidDestroyVideoParser () and cuvidDestroyVideoSource ().

The sample applications use all three components - Video Source, Video Parser, and Video
Decoder. The components are not dependent on each other and hence can be used
independently. The user can unplug the Video Source and Video Parser and plug-in an
implementation of his own. In this document we will be concentrating particularly on the
Video Decoder (colored dark green in Figure 1) and the stages following decode (format
conversion and display using OpenGL or DirectX). It is highly recommended that the user
use his/her own implementation for Video Source and Video Parser. These two
components are neither hardware-accelerated nor software-optimized and users may
want to have their own customized parsers which have better performance.

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 5

Chapter 4. NVIDIA VIDEO DECODER
(NVDECODE) API

The NVDECODE API consists of two main header-files: dynlink cuviddec.h and
dynlink nvcuvid.h. The samples in NVIDIA Video Codec SDK dynamically load the
library functions and only include dynlink cuviddec.hand dynlink nvcuvid.h in
the source files. These headers can be found under . /Samples/common/inc folder in
the Video Codec SDK package. The Windows DLL nvcuvid.dll is included in the
NVIDIA display driver for Windows. The Linux library 1ibnvcuvid. sois included with
NVIDIA display driver for Linux.

4.1 VIDEO DECODER APIS

The Video Decoder API consists of the following main functions:

// Queries the functionalities exposed through NVDECODE API
CUresult cuvidGetDecoderCaps (CUVIDDECODECAPS *pdc) ;

// Create the Decoder Object

CUresult cuvidCreateDecoder (CUvideodecoder *phDecoder,
CUVIDDECODECREATEINFO *pdci) ;

// Destroy the Decoder Object

CUresult cuvidDestroyDecoder (CUvideodecoder hDecoder) ;

// Decode a single picture (field or frame)
CUresult cuvidDecodePicture (CUvideodecoder hDecoder,
CUVIDPICPARAMS *pPicParams) ;

// Post-Process and map a video frame for use in CUDA

CUresult cuvidMapVideoFrame (CUvideodecoder hDecoder, int PicIdx,
unsigned int* pDevPtr. unsigned int*

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 6

pPitch, CUVIDPROCPARAMS* pVPP) ;

// Unmap the previously mapped video frame
CUresult cuvidUnmapVideoFrame (CUvideodecoder hDecoder, unsigned int
DevPtr

4.2 QUERYING DECODE CAPABAILITIES

The API cuvidGetDecoderCaps () lets users query the capabilities of underlying
hardware video decoder. As illustrated in Table 1, different GPUs have hardware
decoders with different capabilities. Therefore, in order to ensure your application works
on all generations of GPU hardware, it is highly recommended that the application is
written to query the hardware capabilities and take appropriate decision based on
presence/absence of the desired capability/functionality.

The sample applications demonstrate how to use the API cuvidGetDecoderCaps() to
query the functionalities exposed by the NVDECODE API.

The client needs fill in the following fields of cUVIDDECODECAPS before calling
cuvidGetDecoderCaps() .

» eCodecType: Codec type (H.264, HEVC, VP9 etc.)
» eChromaFormat: 4:2:0, 4:4:4, etc.
» nBitDepthMinus8: 0 for 8-bit, 2 for 10-bit, 4 for 12-bit

When cuvidGetDecoderCaps() is called, the driver fills up the remaining fields of
CUVIDDECODECAPS, indicating the support for the queried codec profile, supported
resolutions etc. Please refer to the structure definition of CUVIDDECODECAPS structure for
more information.

4.3 CREATING A DECODER

The sample applications use the API cuvidCreateDecoder () through a C++ wrapper
class videoDecoder defined in videoDecoder.h. The class’s constructor is a good
starting point to see how to set up the structure CUVIDDECODECREATEINFO for
cuvidCreateDecoder () method. Most importantly, the structure
CUVIDDECODECREATEINFO contains the following information about the stream to be
decoded:

» CodecType: H.264, HEVC, VP9 etc.
> Frame size: Values of ulwidth and ulHeight

» ChromaFormat: 4:2:0, 4:4:4, etc.

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 7

>

Bit depth: O for 8-bit, 2 for 10-bit, 4 for 12-bit

The user also specifies various properties of the output that the decoder should generate:

>

>

Output surface format (User needs to specify cudavideoSurfaceFormat NV12 or

cudaVideoSurfaceFormat_ P016 for 8-bit or 10/12 bit contents respectively).
Output frame size

Maximum number of output surfaces: This is the maximum number of surfaces
that the client code will simultaneously map for display.

Maximum number of surfaces the decoder may allocate for decoding.

The following pseudo-code demonstrates the setup of decoder in case of scaling,
cropping, or aspect ratio conversion.

// Scaling. Source size is 1280x960. Scale to 1920x1080.
CUresult rResult;

unsigned int uScaleW, uScaleH;

uScaleWw = 1920;

uScaleH = 1080;

CUVIDDECODECREATEINFO stDecodeCreateInfo;
memset (&stDecodeCreateInfo, 0, sizeof (CUVIDDECODECREATEINFO)) ;

stDecodeCreateInfo.ulTargetWidth

// setup the structure members

uScaleWidth;

stDecodeCreateInfo.ulTargetHeight = uScaleHeight;

rResult = cuvidCreateDecoder (&hDecoder, &stDecodeCreateInfo);

// Cropping. Source size is 1280x960
CUresult rResult;
unsigned int uCropL, uCropR, uCropT, uCropB;

uCropL = 30;
uCropR = 700;
uCropT = 20;
uCropB = 500;

CUVIDDECODECREATEINFO stDecodeCreatelInfo;
memset (&stDecodeCreateInfo, 0, sizeof (CUVIDDECODECREATEINEFO)) ;

// setup structure members

stDecodeCreateInfo.display area.left = uCropL;

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08

stDecodeCreateInfo.display area.right
stDecodeCreateInfo.display area.top
stDecodeCreateInfo.display are.bottom

rResult = cuvidCreateDecoder (&hDecoder,

// Aspect Ratio Conversion.

// 16:9
CUresult rResult;

unsigned int uCropL, uCropR, uCropT,

uDispAR L = 0;
uDispAR R = 1280;
uDispAR T 70;
uDispAR B 790;

Source size

uCropR;
uCropT;
uCropB;

&stDecodeCreatelInfo) ;

is 1280x960(4:3) .

uCropB;

CUVIDDECODECREATEINFO stDecodeCreatelInfo;
sizeof (CUVIDDECODECREATEINEO)) ;

memset (&stDecodeCreateInfo, O,

// setup structure members

stDecodeCreatelInfo.
stDecodeCreatelInfo.
stDecodeCreatelInfo.
stDecodeCreatelInfo.

reResult = cuvidCreateDecoder (&hDecoder,

4.4 DECODING SURFACES

target rect.
target rect.
target rect.
target rect.

left
right
top
bottom

uDispAR L;
uDispAR R;
uDispAR T;
uDispAR B;

Convert to

&stDecodeCreatelInfo) ;

The classes VideoSource and VideoParser wrap the calls to Video Source and Video
Parser components of Figure 1. The videoParser class implements three callback
functions, two of which are explained below:

// called by the video parser to decode a single picture.
// parser will deliver data as fast as it can,

Since the

we need to make sure

// that the picture index we're attempting to use for decode is no

// longer used for

display.

static int CUDAAPI HandlePictureDecode (void *pUserData,

// called by the video parser to display a video frame

NVIDIA VIDEO DECODER INTERFACE

CUVIDPICPARAMS *pPicParams) ;

(in case of

PG-08085-001_v08

// field pictures, there may be two decode calls per one display call,

// since two fields make up one frame)

static int CUDAAPI HandlePictureDisplay(void *pUserData,
CUVIDPARSERDISPINFO *pPicParams) ;

VideoParser passes a CUVIDPICPARAMS structure to the callback which can be passed
without any modifications to the function cuvidbecodePicture (). The CUVIDPICPARAMS
structure contains all the information necessary for the decoder to decode a frame or field.
In particular, it contains pointers to the video bitstream, information about frame size,
flags denoting whether it’s a field or a frame, bottom or top field, etc.

The decoded result gets associated with a picture-index value in the CUVIDPICPARAMS
structure, which is also provided by the parser. This picture index is later used to map the
decoded frames to CUDA memory.

The implementation of HandlePictureDecode () in the sample application waits if the
output queue is full. When a slot in the queue becomes available, it simply invokes the
cuvidDecodePicture () function, passing the ppicParams as received from the parser.

The HandlePictureDisplay() method is passed a CUVIDPARSERDISPINFO structure
which contains the necessary data for displaying a frame; i.e. frame index of the decoded
frame (as given to the decoder), and some information relevant for display such as frame
time, field information, etc. The parser calls this method for frames in the order that they
should be displayed.

The implementation of HandlePictureDisplay () method in the sample application
simply enqueues the pPicParams passed by the parser into the FrameQueue object.

The FrameQueue is used to implement a producer-consumer pattern for passing frames
(or better, references to decoded frames) between the VideoSource’s decoding thread and
the application’s main thread, which is responsible for displaying them on the screen.

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 10

4.5 PROCESSING AND DISPLAYING FRAMES

The user needs to call cuvidmapvideoFrame () to getthe CUDA device pointer and pitch
of the surface that has the decoded frame. The following is a pseudo-code that
demonstrates using cuvidMapVideoFrame () and cuvidUnmapVideoFrame ().

// MapFrame: Call cuvidMapVideoFrame and get the devptr and associated
// pitch. Copy this surface (in device memory) to host memory using
// CUDA device to host memcpy.

bool MapFrame ()

{
CUVIDPARSEDISPINFO stDispInfo;
CUVIDPROCPARAMS stProcParams;
CUresult rResult;
unsigned int cuDevPtr; int nPitch, nPicIdx;
unsigned char* pHostPtr;

memset (&stDispInfo, 0, sizeof (CUVIDPARSEDISPINFO)) ;
memset (&§stProcParams, 0, sizeof (CUVIDPROCPARAMS)) ;

// setup stProcParams if required

// retrieve the frames from the Frame Display Queue. This Queue is
// 1is populated in HandlePictureDisplay.
if (g _pFrameQueue->dequeue (&stDispInfo))
{
nPicIdx = stDispInfo.picture index;
rResult = cuvidMapVideoFrame (&hDecoder, nPicIdx, &cuDevPtr,
&nPitch, &stProcParams) ;

// use CUDA based Device to Host memcpy
pHostPtr = cuMemAllocHost ((void**) &pHostPtr, nPitch);
if (pHostPtr)
{

rResult = cuMemcpyDtoH (pHostPtr, cuDevPtr, nPitch);
}

rResult = cuvidUnmapVideoFrame (&§hDecoder, cuDevPtr) ;

// Dump YUV to a file
if (pHostPtr)

{
cuMemFreeHost (pHostPtr) ;

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 11

The function copyDecodedFrameToTexture () in videoDecode.cpp does something
more than the above pseudo-code. It retrieves the frame (decoded surface) from
FrameQueue as above. Uses cuvidMapVideoFrame () to getthe CUDA device pointer and
the associated pitch of the decoded surface. It maps a D3D/OGL texture to be used by
CUDA (interop surface). It then calls cudaPostProcessFrame () to do the color space
conversion from NV12 to RGBA. The texture holds the RGBA surface. This texture can
now be drawn to the screen.

The following list summaries the function calls involved (refer sample apps) in the display
and post-process pipeline:

1. cuvidMapVideoFrame — gets a CUDA device pointer from decoded frame of a Video
Decoder (using map).

2. cuD3D9ResourceGetMappedPointer — For cudaDecodeD3D9, this function
retrieves a CUDA device pointer from a D3D9 texture.

3. cuGLMapBufferObject— For cudaDecodeGL, this function retrieves a CUDA device
pointer from an OpenGL PBO (Pixel Buffer Object).

4. cudaPostProcessFrame — calls all subsequent CUDA post-process functions on that
frame, and writes the result directly to the Mapped D3D texture.

5. cuD3D9UnmapResources — For NvDecodeD3D9, the CUDA driver will release the
pointer back to the D3D9 driver. This tells the Direct3D driver that CUDA is finished
modifying the resource, and that it is safe to use it with D3D9.

6. cuGLUnmapBufferObject - For NvDecodeGL, the CUDA driver will release the
pointer back to the OpenGL driver. This tells the OpenGL driver that CUDA is finished
modifying the resource, and that it is safe to use it with OpenGL.

7. cuvidUnmapVideoFrame - Unmap the previously mapped frame.

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 12

4.6 WRITING AN EFFICIENT DECODE-DISPLAY
APPLICATION

The NVDEC engine on NVIDIA GPUs is a dedicated hardware block, which decodes the
input video bitstream in supported formats. A typical video decode and display
application consists of the following stages:

1. Video bitstream parser
2. Video decoder
3. Post-processor
4. Screen display

Of these, post-processing (such as scaling, color space conversion, noise reduction, color
enhancement etc.) can be effectively performed using user-defined CUDA kernels.

The post-processed frames can then be sent to the display engine for displaying on the
screen, if required. Note that this operation is outside the scope of NVDECODE APIs.

The sample applications included with the Video Codec SDK are written to demonstrate
the functionality of various APIs but they are by no means fully optimized applications.
In fact, programmers are strongly encouraged to ensure that their application is well-
designed, with various stages in the decode-postprocess-display pipeline structured in an
efficient manner to achieve desired performance.

As a starting point, an optimized implementation may make use of independent threads
for bitstream decode and display as follows:

1. Decode Thread: This thread calls cuvidDecodePicture () and pushes the decoded
frame to the display queue. This continues as long as there are frames to decode.

2. Display thread: This thread reads the display queue and checks if there are any
decoded frames. If yes, then it calls cuvidMapVideoFrame () to get the CUDA device
pointer and pitch of the frame. The resulting CUDA device pointer can be used for
CUDA post-processing of the decoded video frames using user-defined CUDA
kernels. Finally, it is necessary to call cuvidUnMapVideoFrame () so that the decoded
frame buffer is unmapped by the driver. This continues as long as there are decoded
frames in the display queue and end of decode has not been reached. The display
thread presents the contents of the post processed video frame to an OpenGL or
Direct3D surface, using CUDA interoperability.

To ensure that the video frames will playback without stuttering or hitching, it is
necessary to ensure that decode and display threads do not get blocked. Two or more
D3D9/D3D11 or OpenGL surfaces allows double or triple buffered playback. This allows
both decode and display to run on different surfaces without being blocked.

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08 | 13

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other rights
of third parties that may result from its use. No license is granted by implication of otherwise under any patent
rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice.
This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems without express written approval
of NVIDIA Corporation.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of
HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and
other countries. Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright
© 2011-2017 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVI ﬁIA@

