
 

 

PG-08085-001_v08  |  Feb 2017 

Programming Guide 

NVIDIA VIDEO DECODER 
INTERFACE 

  



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 2 

DOCUMENT CHANGE HISTORY 

PG-08085-001_v08 

Version Date Authors Description of Change 

1.0 2016/6/10 VU/CC Initial release 

2.0 2017/2/15 SM Update for SDK8.0 

 

 

  



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 3 

TABLE OF CONTENTS 

Chapter 1. Overview ...................................................................................... 1 

1.1 Codecs Support ........................................................................................ 2 

Chapter 2. Video Decoder Capabilities .............................................................. 1 

Chapter 3. Video Playback and Decoder Pipeline ................................................ 3 

3.1 Decoder Pipeline ....................................................................................... 4 

Chapter 4. NVIDIA Video Decoder (NVDECODE) API ........................................... 6 

4.1 Video Decoder APIs ................................................................................... 6 

4.2 Querying decode capabailities ....................................................................... 7 

4.3 Creating a Decoder .................................................................................... 7 

4.4 Decoding Surfaces ..................................................................................... 9 

4.5 Processing and Displaying Frames ................................................................. 11 

4.6 Writing an Efficient Decode-Display Application ................................................. 13 

 

 

 

  



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 4 

LIST OF FIGURES 

Figure 1. Video decoder pipeline using NVDECODE API ...................................... 4 

 

 

 

LIST OF TABLES 

Table 1. Hardware Video Decoder Capabilities ................................................. 1 

 

 



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  |  1 

Chapter 1.  
OVERVIEW 

NVIDIA GPUs - beginning with the Fermi generation - contain a video decoder engine 

(referred to as NVDEC in this document) which provides fully-accelerated hardware 

video decoding capability. NVDEC can be used for decoding bitstreams of various 

formats: H.264, HEVC (H.265), VP8, VP9, MPEG-1, MPEG-2, MPEG-4 and VC-1. NVDEC 

runs completely independent of compute/graphics engine. 

NVIDIA provides software API and libraries for programming NVDEC. The software 

API, hereafter referred to as NVDECODE API lets developers access the video decoding 

features of NVDEC and interoperate NVDEC with compute and graphics.                

NVDEC decodes the compressed video streams and copies the resulting YUV frames to 

video memory. With frames in video memory, video post processing can be done using 

CUDA. Decoded video frames can either be presented to the display with graphics 

interoperability for video playback, or frames can be passed directly to a dedicated 

hardware encoder (NVENC) for high-performance video transcoding. 

  



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 2 

1.1 CODECS SUPPORT 

The API is supported on Windows and Linux and works in conjunction with NVIDIA’s 

CUDA, graphics, and encoder capabilities. The codecs supported by NVDECODE API 

are:  

 MPEG-1, 

 MPEG-2,  

 MPEG4, 

 VC-1,  

 H.264 (AVCHD),  

 H.265 (HEVC) 

 VP8,  

 VP9. 

Please refer to Chapter 2 for complete details about the video capabilities for various 

GPUs. 

 

 

 

 



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  |  1 

Chapter 2. VIDEO DECODER 
CAPABILITIES  

Table 1 shows the codec support and capabilities of the hardware video decoder for each 

GPU architecture.   

Table 1. Hardware Video Decoder Capabilities 

GPU 

Architecture 

MPEG-1 & 

MPEG-2 

VC-1 & 

MPEG-4 

H.264/AVCHD H.265/HEVC VP8 VP9 

Fermi  

(GF1xx) 

Maximum 

Resolution: 

4080x4080 

Maximum 

Resolution: 

2048x1024 

1024x2048 

Maximum 

Resolution: 

4096x4096 

Profile: 

Baseline, Main, 

High profile up 

to Level 4.1 

Unsupported Unsupported Unsupported 

Kepler  

(GK1xx) 

Maximum 

Resolution: 

4080x4080 

Maximum 

Resolution: 

2048x1024 

1024x2048 

Maximum 

Resolution: 

4096x4096 

Profile: 

Main, High 

profile 

up to Level 4.1 

Unsupported Unsupported Unsupported 

Maxwell Gen 1  

(GM10x) 

Maximum 

Resolution: 

4080x4080 

Maximum 

Resolution: 

2048x1024 

1024x2048 

  

Maximum 

Resolution: 

4096x4096 

Profile: 

Baseline, Main, 

High profile up 

to Level 5.1 

Unsupported Unsupported Unsupported 



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 2 

GPU 

Architecture 

MPEG-1 & 

MPEG-2 

VC-1 & 

MPEG-4 

H.264/AVCHD H.265/HEVC VP8 VP9 

Second 

generation  

Maxwell 

(GM20x, 

except GM206)    

Maximum 

Resolution: 

4080x4080 

 

 

 

Maximum 

Resolution: 

2048x1024 

1024x2048 

 

Max 

bitrate: 60 

Mbps 

Maximum 

Resolution: 

4096x4096 

Profile: 

Baseline, Main, 

High profile up 

to Level 5.1 

Unsupported Maximum 

Resolution: 

 4096x4096 

Unsupported 

 GM206 Maximum 

Resolution: 

4080x4080 

Maximum 

Resolution: 

2048x1024 

1024x2048 

  

Maximum 

Resolution: 

4096x4096 

Profile: 

Baseline, Main, 

High profile up 

to Level 5.1 

Maximum 

Resolution: 

4096x2304  

Profile: 

Main profile up 

to Level 5.1 

and main10 

profile 

Maximum 

Resolution: 

4096x4096 

Maximum 

Resolution: 

4096x2304  

Profile: 

Profile 0  

GP100 Maximum 

Resolution: 

4080x4080 

Maximum 

Resolution: 

2048x1024 

1024x2048 

Maximum 

Resolution: 

4096x4096 

Profile: 

Baseline, Main, 

High profile up 

to Level 5.1  

Maximum  

Resolution: 

4096x4096 

Profile: 

Main profile up 

to Level 5.1, 

main10 and 

main12 profile 

Maximum 

Resolution: 

4096x4096 

Maximum 

Resolution: 

4096x4096 

Profile: 

Profile 0 

GP10x Maximum 

Resolution: 

4080x4080 

Maximum 

Resolution: 

2048x1024 

1024x2048 

Maximum 

Resolution: 

4096x4096 

Profile: 

Baseline, Main, 

High profile up 

to Level 5.1 

Maximum  

Resolution: 

8192x8192 

Profile: 

Main profile up 

to Level 5.1, 

main10 and 

main12 profile 

Maximum 

Resolution: 

4096x40961 

Maximum2 

Resolution: 

8192x8192 

Profile: 

Profile 0, 10-

bit and 12-

bit decoding 

 

                                                      

1 Supported only on GP104 
2 VP9 10-bit and 12-bit decoding is supported on select GP10x GPUs 



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  |  3 

Chapter 3. VIDEO PLAYBACK AND 
DECODER PIPELINE 

Sample applications3 NvDecodeD3D9 (DirectX 9), NvDecodeD3D11 (DirectX 11) and 

NvDecodeGL (OpenGL on Windows and Linux), included in the SDK package, 

demonstrate the following functions in a typical video playback application: 

1. Parsing the video input source. 

2. Querying the decode capabilities.  

3. Decoding video bitstream on GPU using NVDECODE API. 

4. Converting decoded YUV surface NV12/P016 format to RGBA. 

5. Mapping RGBA surface to DirectX 9.0 or OpenGL texture. 

6. Drawing texture to screen. 

Sample application NvTranscoder included in the SDK package demonstrates how to set 

up an end-to-end video transcode pipeline using NVDECODE and NVENCODE APIs, 

with following functions: 

1. Parsing the video input source. 

2. Decoding video bitstream on GPU using NVDECODE API. 

3. Sending YUV video frame to hardware video encoder using the NVENCODE API. 

4. Getting back compressed video bitstream in system memory for further processing. 

 

                                                      

3 Location:  ./Samples in the Video Codec SDK package 



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 4 

3.1 DECODER PIPELINE 

 

  

Figure 1. Video decoder pipeline using NVDECODE API 

Figure 1 shows the decoder pipeline using NVDECODE API. The solid black lines show 

the data flow between modules. The solid colored lines represent process flow. 

1. The application thread (referred to as the primary thread) calls 

cuvidCreateVideoSource(), which spawns a de-multiplexer thread (referred to as 

the secondary thread). 

2. The primary thread (colored in blue above) calls cuvidCreateVideoParser() to 

create the parser. It also creates the decoder by calling cuvidCreateDecoder(). 

3. The secondary thread (colored in red above) makes the following callbacks given that 

the function pointers are not NULL. The callbacks are serial: 

a) Handle video data:  The callback implementation calls cuvidParseVideoData() 

to parse the video data. 

b) Handle video sequence: The callback is made when there is sequence change. 

c) Handle picture decode: The callback implementation calls 

cuvidDecodePicture() to decode the frame. 

d) Handle Picture Display: The callback implementation signals the primary thread 

to display the picture. 

4. The primary thread calls cuvidMapVideoFrame() to get the pitch and CUDA device 

pointer to the surface which contains the decoded/post-processed frame. Thereafter it 

calls cuvidUnmapVideoFrame() as the complimentary operation. 



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 5 

5. The primary thread destroys the resources by calling cuvidDestroyDecoder(), 

cuvidDestroyVideoParser() and cuvidDestroyVideoSource(). 

 

The sample applications use all three components - Video Source, Video Parser, and Video 

Decoder. The components are not dependent on each other and hence can be used 

independently. The user can unplug the Video Source and Video Parser and plug-in an 

implementation of his own. In this document we will be concentrating particularly on the 

Video Decoder (colored dark green in Figure 1) and the stages following decode (format 

conversion and display using OpenGL or DirectX). It is highly recommended that the user 

use his/her own implementation for Video Source and Video Parser. These two 

components are neither hardware-accelerated nor software-optimized and users may 

want to have their own customized parsers which have better performance. 

 



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  |  6 

Chapter 4. NVIDIA VIDEO DECODER 
(NVDECODE) API 

The NVDECODE API consists of two main header-files: dynlink_cuviddec.h and 

dynlink_nvcuvid.h. The samples in NVIDIA Video Codec SDK dynamically load the 

library functions and only include dynlink_cuviddec.h and dynlink_nvcuvid.h in 

the source files. These headers can be found under ./Samples/common/inc folder in 

the Video Codec SDK package. The Windows DLL nvcuvid.dll is included in the 

NVIDIA display driver for Windows. The Linux library libnvcuvid.so is included with 

NVIDIA display driver for Linux. 

4.1 VIDEO DECODER APIS 

The Video Decoder API consists of the following main functions: 

// Queries the functionalities exposed through NVDECODE API 

CUresult cuvidGetDecoderCaps(CUVIDDECODECAPS *pdc); 

 

// Create the Decoder Object 

CUresult cuvidCreateDecoder(CUvideodecoder *phDecoder, 

                            CUVIDDECODECREATEINFO *pdci); 

// Destroy the Decoder Object 

CUresult cuvidDestroyDecoder(CUvideodecoder hDecoder); 

 

// Decode a single picture (field or frame) 

CUresult cuvidDecodePicture(CUvideodecoder hDecoder,  

                            CUVIDPICPARAMS *pPicParams); 

 

// Post-Process and map a video frame for use in CUDA 

CUresult cuvidMapVideoFrame(CUvideodecoder hDecoder, int PicIdx, 

                            unsigned int* pDevPtr. unsigned int* 



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 7 

                            pPitch, CUVIDPROCPARAMS* pVPP); 

 

// Unmap the previously mapped video frame 

CUresult cuvidUnmapVideoFrame(CUvideodecoder hDecoder, unsigned int 

DevPtr 

                

4.2 QUERYING DECODE CAPABAILITIES 

The API cuvidGetDecoderCaps() lets users query the capabilities of underlying 

hardware video decoder. As illustrated in Table 1, different GPUs have hardware 

decoders with different capabilities. Therefore, in order to ensure your application works 

on all generations of GPU hardware, it is highly recommended that the application is 

written to query the hardware capabilities and take appropriate decision based on 

presence/absence of the desired capability/functionality.  

The sample applications demonstrate how to use the API cuvidGetDecoderCaps() to 

query the functionalities exposed by the NVDECODE API. 

The client needs fill in the following fields of CUVIDDECODECAPS before calling 
cuvidGetDecoderCaps().  

 eCodecType: Codec type (H.264, HEVC, VP9 etc.) 

 eChromaFormat: 4:2:0, 4:4:4, etc. 

 nBitDepthMinus8: 0 for 8-bit, 2 for 10-bit, 4 for 12-bit 

When cuvidGetDecoderCaps()  is called, the driver fills up the remaining fields of 

CUVIDDECODECAPS, indicating the support for the queried codec profile, supported 

resolutions etc. Please refer to the structure definition of CUVIDDECODECAPS structure for 

more information. 

4.3 CREATING A DECODER 

The sample applications use the API cuvidCreateDecoder() through a C++ wrapper 

class VideoDecoder defined in VideoDecoder.h. The class’s constructor is a good 

starting point to see how to set up the structure CUVIDDECODECREATEINFO for 

cuvidCreateDecoder() method. Most importantly, the structure 

CUVIDDECODECREATEINFO contains the following information about the stream to be 

decoded: 

 CodecType: H.264, HEVC, VP9 etc. 

 Frame size: Values of ulWidth and ulHeight 

 ChromaFormat: 4:2:0, 4:4:4, etc. 



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 8 

 Bit depth: 0 for 8-bit, 2 for 10-bit, 4 for 12-bit 

The user also specifies various properties of the output that the decoder should generate: 

 Output surface format (User needs to specify cudaVideoSurfaceFormat_NV12 or 

cudaVideoSurfaceFormat_P016 for 8-bit or 10/12 bit contents respectively).  

 Output frame size 

 Maximum number of output surfaces: This is the maximum number of surfaces 

that the client code will simultaneously map for display. 

 Maximum number of surfaces the decoder may allocate for decoding. 

The following pseudo-code demonstrates the setup of decoder in case of scaling, 
cropping, or aspect ratio conversion. 

 
// Scaling. Source size is 1280x960. Scale to 1920x1080. 

CUresult rResult; 

unsigned int uScaleW, uScaleH; 

uScaleW = 1920; 

uScaleH = 1080; 

... 

 

CUVIDDECODECREATEINFO stDecodeCreateInfo; 

memset(&stDecodeCreateInfo, 0, sizeof(CUVIDDECODECREATEINFO)); 

 

... // setup the structure members 

 

stDecodeCreateInfo.ulTargetWidth  = uScaleWidth; 

stDecodeCreateInfo.ulTargetHeight = uScaleHeight; 

 

rResult = cuvidCreateDecoder(&hDecoder, &stDecodeCreateInfo); 

... 

 

 
// Cropping. Source size is 1280x960 

CUresult rResult; 

unsigned int uCropL, uCropR, uCropT, uCropB; 

uCropL = 30; 

uCropR = 700; 

uCropT = 20; 

uCropB = 500; 

... 

 

CUVIDDECODECREATEINFO stDecodeCreateInfo; 

memset(&stDecodeCreateInfo, 0, sizeof(CUVIDDECODECREATEINFO)); 

 

... // setup structure members 

 

stDecodeCreateInfo.display_area.left  = uCropL; 



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 9 

stDecodeCreateInfo.display_area.right = uCropR; 

stDecodeCreateInfo.display_area.top   = uCropT; 

stDecodeCreateInfo.display_are.bottom = uCropB; 

 

rResult = cuvidCreateDecoder(&hDecoder, &stDecodeCreateInfo); 

... 

 

 

// Aspect Ratio Conversion. Source size is 1280x960(4:3). Convert to 

// 16:9  

CUresult rResult; 

unsigned int uCropL, uCropR, uCropT, uCropB; 

uDispAR_L = 0; 

uDispAR_R = 1280; 

uDispAR_T = 70; 

uDispAR_B = 790; 

... 

 

CUVIDDECODECREATEINFO stDecodeCreateInfo; 

memset(&stDecodeCreateInfo, 0, sizeof(CUVIDDECODECREATEINFO)); 

 

... // setup structure members 

 

stDecodeCreateInfo.target_rect.left   = uDispAR_L; 

stDecodeCreateInfo.target_rect.right  = uDispAR_R; 

stDecodeCreateInfo.target_rect.top    = uDispAR_T; 

stDecodeCreateInfo.target_rect.bottom = uDispAR_B; 

 

reResult = cuvidCreateDecoder(&hDecoder, &stDecodeCreateInfo); 

... 

4.4 DECODING SURFACES 

The classes VideoSource and VideoParser wrap the calls to Video Source and Video 

Parser components of Figure 1. The VideoParser class implements three callback 

functions, two of which are explained below: 

// called by the video parser to decode a single picture. Since the  

// parser will deliver data as fast as it can, we need to make sure 

// that the picture index we're attempting to use for decode is no 

// longer used for display.  

static int CUDAAPI HandlePictureDecode(void *pUserData, 

                                     CUVIDPICPARAMS *pPicParams); 

 

// called by the video parser to display a video frame (in case of  



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 10 

// field pictures, there may be two decode calls per one display call, 

// since two fields make up one frame) 

static int CUDAAPI HandlePictureDisplay(void *pUserData, 

                                      CUVIDPARSERDISPINFO *pPicParams); 
 

VideoParser passes a CUVIDPICPARAMS structure to the callback which can be passed 

without any modifications to the function cuvidDecodePicture(). The CUVIDPICPARAMS 

structure contains all the information necessary for the decoder to decode a frame or field. 

In particular, it contains pointers to the video bitstream, information about frame size, 

flags denoting whether it’s a field or a frame, bottom or top field, etc. 

The decoded result gets associated with a picture-index value in the CUVIDPICPARAMS 

structure, which is also provided by the parser. This picture index is later used to map the 

decoded frames to CUDA memory. 

The implementation of HandlePictureDecode() in the sample application waits if the 

output queue is full. When a slot in the queue becomes available, it simply invokes the 

cuvidDecodePicture() function, passing the pPicParams as received from the parser. 

The HandlePictureDisplay() method is passed a CUVIDPARSERDISPINFO structure 

which contains the necessary data for displaying a frame; i.e. frame index of the decoded 

frame (as given to the decoder), and some information relevant for display such as frame 

time, field information, etc. The parser calls this method for frames in the order that they 

should be displayed. 

The implementation of HandlePictureDisplay() method in the sample application 

simply enqueues the pPicParams passed by the parser into the FrameQueue object. 

The FrameQueue is used to implement a producer-consumer pattern for passing frames 

(or better, references to decoded frames) between the VideoSource’s decoding thread and 

the application’s main thread, which is responsible for displaying them on the screen. 

 

 

 

 

 

 

 

 

 



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 11 

 

4.5 PROCESSING AND DISPLAYING FRAMES 

The user needs to call cuvidmapVideoFrame() to get the CUDA device pointer and pitch 

of the surface that has the decoded frame. The following is a pseudo-code that 

demonstrates using cuvidMapVideoFrame() and cuvidUnmapVideoFrame(). 

// MapFrame: Call cuvidMapVideoFrame and get the devptr and associated 

// pitch. Copy this surface (in device memory) to host memory using  

// CUDA device to host memcpy. 

 

bool MapFrame() 

{ 

    CUVIDPARSEDISPINFO stDispInfo; 

    CUVIDPROCPARAMS stProcParams; 

    CUresult rResult; 

    unsigned int cuDevPtr; int nPitch, nPicIdx; 

    unsigned char* pHostPtr; 

 

    memset(&stDispInfo, 0, sizeof(CUVIDPARSEDISPINFO)); 

    memset(&stProcParams, 0, sizeof(CUVIDPROCPARAMS)); 

 

    ... // setup stProcParams if required 

 

    // retrieve the frames from the Frame Display Queue. This Queue is 

    // is populated in HandlePictureDisplay. 

    if (g_pFrameQueue->dequeue(&stDispInfo)) 

    { 

        nPicIdx = stDispInfo.picture_index; 

        rResult = cuvidMapVideoFrame(&hDecoder, nPicIdx, &cuDevPtr, 

                                     &nPitch, &stProcParams); 

         

        // use CUDA based Device to Host memcpy 

        pHostPtr = cuMemAllocHost((void** )&pHostPtr, nPitch); 

        if (pHostPtr) 

        { 

            rResult = cuMemcpyDtoH(pHostPtr, cuDevPtr, nPitch); 

        } 

        rResult = cuvidUnmapVideoFrame(&hDecoder, cuDevPtr); 

    } 

 

    ... // Dump YUV to a file 

     

    if (pHostPtr) 

    { 

        cuMemFreeHost(pHostPtr); 



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 12 

    } 

    ... 

}       

 

The function copyDecodedFrameToTexture() in videoDecode.cpp does something 

more than the above pseudo-code. It retrieves the frame (decoded surface) from 

FrameQueue as above. Uses cuvidMapVideoFrame() to get the CUDA device pointer and 

the associated pitch of the decoded surface. It maps a D3D/OGL texture to be used by 

CUDA (interop surface). It then calls cudaPostProcessFrame() to do the color space 

conversion from NV12 to RGBA. The texture holds the RGBA surface. This texture can 

now be drawn to the screen.  

The following list summaries the function calls involved (refer sample apps) in the display 

and post-process pipeline: 

1. cuvidMapVideoFrame – gets a CUDA device pointer from decoded frame of a Video 

Decoder (using map). 

2. cuD3D9ResourceGetMappedPointer – For cudaDecodeD3D9, this function 

retrieves a CUDA device pointer from a D3D9 texture. 

3. cuGLMapBufferObject – For cudaDecodeGL, this function retrieves a CUDA device 

pointer from an OpenGL PBO (Pixel Buffer Object). 

4. cudaPostProcessFrame – calls all subsequent CUDA post-process functions on that 

frame, and writes the result directly to the Mapped D3D texture. 

5. cuD3D9UnmapResources – For NvDecodeD3D9, the CUDA driver will release the 

pointer back to the D3D9 driver. This tells the Direct3D driver that CUDA is finished 

modifying the resource, and that it is safe to use it with D3D9. 

6. cuGLUnmapBufferObject – For NvDecodeGL, the CUDA driver will release the 

pointer back to the OpenGL driver. This tells the OpenGL driver that CUDA is finished 

modifying the resource, and that it is safe to use it with OpenGL. 

7. cuvidUnmapVideoFrame – Unmap the previously mapped frame. 

 

 

  



 

NVIDIA VIDEO DECODER INTERFACE PG-08085-001_v08  | 13 

4.6 WRITING AN EFFICIENT DECODE-DISPLAY 
APPLICATION 

The NVDEC engine on NVIDIA GPUs is a dedicated hardware block, which decodes the 

input video bitstream in supported formats. A typical video decode and display 

application consists of the following stages: 

1. Video bitstream parser 

2. Video decoder 

3. Post-processor 

4. Screen display 

Of these, post-processing (such as scaling, color space conversion, noise reduction, color 

enhancement etc.) can be effectively performed using user-defined CUDA kernels. 

The post-processed frames can then be sent to the display engine for displaying on the 

screen, if required. Note that this operation is outside the scope of NVDECODE APIs. 

The sample applications included with the Video Codec SDK are written to demonstrate 

the functionality of various APIs but they are by no means fully optimized applications. 

In fact, programmers are strongly encouraged to ensure that their application is well-

designed, with various stages in the decode-postprocess-display pipeline structured in an 

efficient manner to achieve desired performance. 

As a starting point, an optimized implementation may make use of independent threads 

for bitstream decode and display as follows: 

1. Decode Thread: This thread calls cuvidDecodePicture() and pushes the decoded 

frame to the display queue. This continues as long as there are frames to decode. 

2. Display thread: This thread reads the display queue and checks if there are any 

decoded frames. If yes, then it calls cuvidMapVideoFrame() to get the CUDA device 

pointer and pitch of the frame. The resulting CUDA device pointer can be used for 

CUDA post-processing of the decoded video frames using user-defined CUDA 

kernels. Finally, it is necessary to call cuvidUnMapVideoFrame() so that the decoded 

frame buffer is unmapped by the driver. This continues as long as there are decoded 

frames in the display queue and end of decode has not been reached. The display 

thread presents the contents of the post processed video frame to an OpenGL or 

Direct3D surface, using CUDA interoperability. 

To ensure that the video frames will playback without stuttering or hitching, it is 

necessary to ensure that decode and display threads do not get blocked. Two or more 

D3D9/D3D11 or OpenGL surfaces allows double or triple buffered playback.  This allows 

both decode and display to run on different surfaces without being blocked. 



 

www.nvidia.com 

Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER 
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO 
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR 
A PARTICULAR PURPOSE.  

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 
responsibility for the consequences of use of such information or for any infringement of patents or other rights 
of third parties that may result from its use. No license is granted by implication of otherwise under any patent 
rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. 
This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products 
are not authorized as critical components in life support devices or systems without express written approval 
of NVIDIA Corporation. 

HDMI 

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of 
HDMI Licensing LLC. 

OpenCL 

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc. 

Trademarks 

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and 
other countries. Other company and product names may be trademarks of the respective companies with which 
they are associated. 

Copyright  

© 2011-2017 NVIDIA Corporation. All rights reserved.  

 


