

DOCUMENT CHANGE HISTORY

NVENC_VideoEncoder_API_PG-06155-001_v07

Version Date Authors Description of Change
1.0 2011/12/29 SD/CC Initial release.

1.1 2012/05/04 SD Update for Version 1.1
2.0 2012/10/12 SD Update for Version 2.0
3.0 2013/07/25 AG Update for Version 3.0
4.0 2014/07/01 SM Update for Version 4.0
5.0 2014/11/30 MV Update for Version 5.0
6.0 2015/10/15 VP Update for Version 6.0
7.0 2016/6/10 SM Update for Version 7.0

NVIDIA Video Encoder (NVENC) Interface

NVENC_VideoEncoder_API_PG-06155-001_v07 | ii

Chapter 1. INtroducCtion........cccciiiiiiiiiiiiiiiiiiiiiiiiiieiieiieieeteetesescassasonsonsonsansansas 1

Chapter 2. BasiC ENcoding FIOWcocuiiiiiiiiiiiiiiiiiiiiiiiiiinieneinecnecsatencensonsansansas 2
Chapter 3. Setting Up Hardware for ENCOding........cccccieiiiiiiiieiienieeneeneenneeneencenenns 3
3.1 Opening an ENCOE SESSION. .. .uiutiitiitiitiit et eeteteeteieeieeieeeeenteaseaseasensensennennenns 3
3.1.1 Initializing encode dEVICEcnviiniiiiiii i e e eeeeaae s 3

3.2 Selecting Encoder Codel GUIDuiiiitiitiitiitiitieieieeieeieeeeeeeeeeeeaeetensennensennenns 4
3.3 Encoder Preset Configurations.........ccuiiuiiiiiiiiiiiiiiiii e e 4
3.3.1 Enumerating preset GUIDScciiiiiiiiiiiiiiiiiiiieieiieteeieeeenneeeenneeesnneeennnes 5
3.3.2 Selecting encoder preset configurationccveiiiiiiiiiiiiiiiiiiiieee e, 5

3.4 Selecting an ENcoder Profilec.oouiiiiiiiiiiii e e 6
3.5 Getting Supported List of Input FOrmats.......c.cvuiiiiiiiiiiiiiiiii e 6
3.6 Querying Capability ValUgS.......c.coiiiiiiii i e et aan 6
3.7 [Initializing the Hardware ENCOder SESSION.......ciutiiitiiitiii i iii e et eeieeeieeeiaaanans 7
3.8 Encode Session AtHDULEScuiiniiiiitii e e e 7
3.8.1 Configuring encode session attributesooviiiiiiiiiiie 7
3.8.2 Finalizing codec configuration for encodingccceviiiiiiiiiiiiiiiiiiiiiiiiieeeens 8
3.8.3 Setting encode session attributes.......coviiiiiiiiii e 9

3.9 Creating Resources Required to Hold Input/output Dataccovviiiiiiiiiiiiiiinnnnne 10
3.10 Retrieving SequeNnCe ParameEtersoiviiiiiiitiiiiiieiiieiieeiieeeeieeeenneeeensaeennnes 11
Chapter 4. Encoding the Video Streamccciiiiiiiiiiiiiiiiiiiiiiiiiiineinniencencans 12
4.1 Preparing Input Buffers for ENCOdING......c.ovuiitiitiiiiiiiiiiiiiiiiii e e e eeaeaes 12
4.1.1 Input buffers allocated through NVIDIA Video Encoder Interface.................... 12
4.1.2 Input buffers allocated externally.......cooeeeiiiiiiiiii e 13

4.2 Configuring Per-Frame Encode Parameterscooviiieiiiiiiiiiiiiiiiiiiiiiiiiceiieeeeaenns 14
4.2.1 Forcing current frame to be encoded as intra framecocoeiiiiiiiiiiiiiiiinnnenn. 14
4.2.2 Forcing current frame to be used as a reference frameccccviiviiiiinnn.. 14
4.2.3 Forcing current frame to be used as an IDR frame......c.ccovviiiiiiiiiiiiiiinn.n. 14
4.2.4 Requesting generation of sequence parameterscccvvviviiiiiiiiiiiiiiiiinnnenn, 14

4.3 Submitting Input Frame for ENCOAING «..uveniiiiiiiiii i iiiieiiei i ei e eeeeeeeaaeaas 15
4.4 Retrieving ENcoded OULPUL.iieiiiiiii i eeee e e e eeeeeeanaaas 15
Chapter 5. ENd Of ENCOAING.....cccoiiiiiiiiiiiiiiiiiiiiteieereeteeereecenscenscenscsnnconncennes 16
5.1 Notifying the End of INput Streamooiiiiiiiiiiiii e e e e 16
5.2 RelEaSiNg RESOUICES ..ttt ettt e et et e it e et et e eaeeaaeeeaeeeaeeaneaanenn 16
5.3 CloSiNg ENCOAE SESSIONeunuiiiitiiit it ettt ettt et e it e et eeieeeaeeeaeeeaeaanenn 17
Chapter 6. Modes of Operation..........ccoiieiiiiiiiiiiiiiiiiiiiiiiiitiitiieeieeeneeeneceneeanens 18
6.1 Asynchronous Mode (Windows 7 and @above)coouiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiaeeas 18
6.2 SYNChrONOUS MOME ...cuuiiiiiiit i ce e e e e e e e et et etenaeneeneeasenaennennens 20
6.3 Threading MOdElc.uin i et e et e e eaae 20
Chapter 7. Motion-Estimation-Only Modecccceiiiiiiiiiiiiiiiiiiieiieeieeeneennns 22
7.1 Query Motion-Estimation Only Mode Capability.......ccoviiiiiiiiiiiiiiiiiiiiiiiiciieeeeas 22
7.2 Create Resources for Input/Output Datac.evviiuiiiiiiiiiiiiiiiiiiii i iereneaens 23

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | iii

725 T > LB T o B\ o T g T =0y T F= L o o) 1N 23

7.4 Release the Created RESOUICES. .. vivtirtirriittetieteneenteeeneeneeneeneeneenessessrssneenennens 24
Chapter 8. Advanced Features and Settingscccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnas 25
8.1 LOOK-ahEad ..t e et e a e 25
8.2 Adaptive QuUantization (AQ)evriiitiiitiiitii it er e err e eerreerre e, 26
8.2.1 Y0 L= | YO PP 26
8.2.2 BIC100] o0] 1= 1Y N O PP 26

8.3 High bit depth encodingc.oiuiiiiiiii i e e e e 27
8.4 Encoder Features USING CUDAottt i et e et et eee et et eerenaenaenaans 27
Chapter 9. Recommended NVENC Settings.........cccciiiiiiiiiiiiiiiiiiiiiiieiiinnieniencans 29

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | iv

INTRODUCTION

NVIDIA GPUs based on Kepler, Maxwell and the latest Pascal architectures contain a
hardware-based H.264/HEVC video encoder (hereafter referred to as NVENC). The
NVENC hardware takes YUV/RGB as input, and generates an H.264/HEVC compliant
video bit stream. NVENC hardware’s encoding capabilities can be accessed using the
NVENCODE APIs, available in the NVIDIA Video Codec SDK.

This document provides information on how to program the NVENC using the
NVENCODE APIs exposed in the SDK. The NVENCODE APIs expose encoding
capabilities on Windows (Windows 7 and above) and Linux.

It is expected that the developers should have understanding of H.264/HEVC video
codecs and familiarity with Windows and/or Linux development environment.

NVENCODE API guarantees backward compatibility. This means that applications
compiled with older versions of released API will continue to work on future driver
versions released by NVIDIA.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 1

BASIC ENCODING FLOW

Developers can create a client application that calls NVENCODE API functions exposed
by nvEncodeAPI.dll for Windows or libnvidia-encode.so for Linux. These
libraries are installed as part of the NVIDIA display driver. The client application can
either link to these libraries at run-time using LoadLibrary() on Windows or
dlopen () on Linux.

The NVIDIA video encoder API is designed to accept raw video frames (in YUV or RGB
format) and output the H.264 or HEVC bitstream. Broadly, the encoding flow consists of
the following steps:

1. Initialize the encoder

2. Set up the desired encoding parameters
3. Allocate input/output buffers
4.

Copy frames to input buffers and read bitstream from the output buffers. This can be
done synchronously (Windows & Linux) or asynchronously (Windows 7 and above
only).

5. Close the encoding session
6. Clean-up; release all allocated input/output buffers

These steps are explained in the rest of the document and demonstrated in the sample
application included in the Video Codec SDK package.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 2

SETTING UP HARDWARE
FOR ENCODING

3.1 OPENING AN ENCODE SESSION

After loading the DLL or shared object library, the client's first interaction with the API
is to call NvEncodeAPICreateInstance. This populates the input/output buffer
passed to NvEncodeAPICreateInstance with pointers to functions which implement
the functionality provided in the interface.

After loading the NVENC Interface, the «client should first call
NvEncOpenEncodeSessionEx API to open an encoding session. This function
returns an encode session handle which must be used for all subsequent calls to the API
functions in the current session.

3.1.1 Initializing encode device
The NVIDIA Encoder supports use of the following types of devices:

3.1.1.1 DirectX 9

The client should create a DirectX 9 device with behavior flags including:
D3DCREATE_FPU_PRESERVE

D3DCREATE_MULTITHREADED

D3DCREATE_HARDWARE_VERTEXPROCESSING

The client should pass a pointer to IUnknown interface of the created device (typecast to
void *) as NV _ENC OPEN ENCODE SESSION EX PARAMS::device, and set
NV_ENC_OPEN ENCODE SESSION EX PARAMS::deviceType to
NV_ENC DEVICE TYPE DIRECTX. Use of DirectX devices is supported only on Windows
7 and later versions of the Windows OS.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 3

3.1.1.2 DirectX 10

The client should pass a pointer to ITUnknown interface of the created device typecast to
void *) as NV_ENC_OPEN_ENCODE SESSION_EX PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_ PARAMS::deviceType to
NV_ENC DEVICE TYPE DIRECTX. Use of DirectX devices is supported only on Windows
7 and later versions of Windows OS.

3.1.1.3 DirectX 11

The client should pass a pointer to ITUnknown interface of the created device (typecast to
void *) as NV_ENC_OPEN_ENCODE SESSION_EX PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_ PARAMS::deviceType to
NV_ENC DEVICE TYPE DIRECTX. Use of DirectX devices is supported only on Windows
7 and later versions of Windows OS.

3.1.1.4 CUDA

The client should create a floating CUDA context, and pass the CUDA context handle as
NV_ENC_OPEN_ENCODE_SESSION_EX_ PARAMS::device, and set
NV_ENC_OPEN ENCODE SESSION EX PARAMS::deviceType to

NV_ENC DEVICE TYPE CUDA. Use of CUDA device for Encoding is supported on Linux
and Windows 7 and later OS’s.

3.2 SELECTING ENCODER CODEC GUID

The client should select an Encoding GUID that represents the desired codec for
encoding the video sequence in the following manner:

1. The client should call NvEncGetEncodeGUIDCount to get the number of supported
Encoder GUIDs from the NVIDIA Video Encoder Interface.

2. The client should use this count to allocate a buffer of sufficient size to hold the
supported Encoder GUIDS.

3. The client should then call NvEncGetEncodeGUIDs to populate this list.

The client should select a GUID that matches its requirement from this list and use that
as the encodeGUID for the remainder of the encoding session.

3.3 ENCODER PRESET CONFIGURATIONS

The NVIDIA Encoder Interface exposes various presets to cater to different video
encoding use cases. Using these presets will automatically set all relevant encoding
parameters. This is a coarse level of control exposed by the API Specific

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 4

attributes/parameters within the preset can be tuned, if required. This is explained in
next two subsections.

3.3.1 Enumerating preset GUIDs

The client can enumerate supported Preset GUIDs for the selected encodeGUID as
follows:

1. The client should call NvEncGetEncodePresetCount to get the number of supported
Encoder GUIDs.

2. The client should use this count to allocate a buffer of sufficient size to hold the
supported Preset GUIDs.

3. The client should then call NvEncGetEncodePresetGUIDs to populate this list.

3.3.2 Selecting encoder preset configuration

As mentioned above, the client can use the presetGUID for configuring the encode
session directly. This will automatically set the hardware encoder with appropriate
parameters for particular use-case implied by the preset. If required, the client has the
option to fine-tune the encoder configuration parameters in the preset, and override the
preset defaults. This approach is often-times more convenient from programming point
of view as the programmer only needs to change the configuration parameters which
he/she is interested in, leaving everything else pre-configured as per the preset
definition.

Here are the steps to fetch a preset encode configuration and optionally change select
configuration parameters:

1. Enumerate the supported presets as described above, in Section 3.3.1.
2. Select the preset GUID for which the encode configuration is to be fetched.

3. The client should call NvEncGetEncodePresetConfig with the selected encodeGUID
and presetGUID as inputs

4. The required preset encoder configuration can be retrieved through
NV_ENC PRESET CONFIG::presetCfg.

5. Over-ride the default encoder parameters, if required, using the corresponding
configuration APIs.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 5

3.4 SELECTING AN ENCODER PROFILE

The client may specify a profile to encode for specific encoding scenario. For example,
certain profiles are required for encoding video for playback on iPhone/iPod, encoding
video for blue-ray disc authoring, etc.

The client should do the following to retrieve a list of supported encoder profiles:

1. The client should call NvEncGetEncodeProfileGUIDCount to get the number of
supported Encoder GUIDs from the NVIDIA Video Encoder Interface.

2. The client should use this count to allocate a buffer of sufficient size to hold the
supported Encode Profile GUIDS.

3. The client should then call NvEncGetEncodeProfileGUIDs to populate this list.

The client should select the profile GUID that best matches the requirement.

3.5 GETTING SUPPORTED LIST OF INPUT
FORMATS

NVENCODE API accepts input frames in several different formats, such as YUV and
RGB in specific formats, as enumerated in NV ENC BUFFER_FORMAT.

List of supported input formats can be retrieved as follows:

1. Call NvEncGetInputFormatCount and use the count retrieved from
NvEncGetInputFormatCount to allocate a buffer to hold the list of supported input
buffer formats (which are list elements of type NV_ENC BUFFER FORMAT).

2. Retrieve the supported input buffer formats by calling NvEncGetInputFormats.

The client should select a format enumerated in this list for creating input buffers.

3.6 QUERYING CAPABILITY VALUES

NVIDIA video encoder hardware has evolved over multiple generations, with many
features being added in each new generation of the GPU. To facilitate application to
dynamically figure out the capabilities of the underlying hardware encoder on the
system, NVENCODE API provides a dedicated API to query these capabilities. It is a
good programming practice to query for support of the desired encoder feature before
making use of the feature.

Querying the encoder capabilities can be accomplished as follows:

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 6

1. Specify the capability attribute to be queried in NV_ENC_CAPS_PARAM: : capsToQuery
parameter. This should be a member of the Nv_ENC CAPS enum.

2. Call NvEncGetEncodeCaps to determine support for the required attribute.

Refer to the API reference Nv_ENC CAPS enum definition for interpretation of individual
capability attributes.

3.7 INITIALIZING THE HARDWARE ENCODER
SESSION

The client needs to call NvEncInitializeEncoder with a valid encoder configuration
specified through NV ENC INITIALIZE PARAMS and encoder handle (returned upon
successful opening of encode session)

3.8 ENCODE SESSION ATTRIBUTES

3.8.1 Configuring encode session attributes

Encode session configuration is divided into three parts:

3.8.1.1 Session parameters

Common parameters such as input format, output dimensions, display aspect ratio,
frame rate, average bitrate, etc. are available in NV_ENC INITIALIZE PARAMS structure.
The client should use an instance of this structure as input to NvEncInitalizeEncoder.

The Client must populate the following members of the NV ENC INITIALIZE PARAMS
structure for the encode session to be successfully initialized:

> NV _ENC INITALIZE PARAMS::encodeGUID: The client must select a suitable codec
GUID as described in Section 3.2.

> NV ENC INITIALIZE PARAMS::encodeWidth: The client must specify the desired
width of the encoded video.

> NV _ENC INITIALIZE PARAMS::encodeHeight: The client must specify the desired
height of the encoded video.

NV_ENC INITALIZE PARAMS::reportSliceOffsets can be used to enable reporting of
slice offsets. This feature requires NV ENC INITALIZE PARAMS::enableEncodeAsync
to be set to 0, and does not work with MB-based and byte-based slicing on Kepler GPUs.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 7

3.8.1.2 Advanced codec-level parameters

Parameters dealing with the encoded bit stream such as GOP length, encoder profile,
rate control mode, etc. are exposed through the structure Nv_ENC_CONFIG. The client can
pass codec level parameters through NV_ENC_INITIALIZE PARAMS::
encodeConfig: :encodeCodecConfig as explained below.

3.8.1.3 Advanced codec-specific parameters

Advanced H.264 and HEVC specific parameters are available in structures
NV_ENC CONFIG H264 and NV_ENC CONFIG HEVC respectively.

The client can pass codec-specific parameters through the structure
NV_ENC CONFIG::encodeCodecConfig.

3.8.2 Finalizing codec configuration for encoding

3.8.2.1 High-level control using presets

This is the simplest method of configuring the NVIDIA Video Encoder Interface, and
involves minimal setup steps to be performed by the client. This is intended for use
cases where the client does not need to fine-tune any codec level parameters.

In this case, the client should follow these steps:

1. The client should specify the session parameters as described in Section 3.8.1.1.

2. Optionally, the client can enumerate and select preset GUID that best suits the
current use case, as described in Section 3.3.1. The client should then pass the
selected preset GUID using NV _ENC INITIALIZE PARAMS::presetGUID. This helps
the NVIDIA Video Encoder interface to correctly configure the encoder session
based on the encodeGUID and presetGUID provided.

3. The client should set the advanced codec-level parameter pointer
NV_ENC INITIALIZE PARAMS::encodeConfig::encodeCodecConfig to NULL.
3.8.2.2 Finer control by overriding preset parameters

The client can choose to edit some encoding parameters on top of the parameters set by
the individual preset, as follows:

1. The client should specify the session parameters as described in Section 3.8.1.1.

2. The client should enumerate and select a preset GUID that best suites the current use
case, as described in Section 3.3.1. The client should retrieve a preset encode
configuration as described in Section 3.3.2.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 8

3. The client may need to explicitly query the capability of the encoder to support
certain features or certain encoding configuration parameters. For this, the client
should do the following;:

4. Specify the capability desired attribute through
NV_ENC CAPS PARAM: :capsToQuery parameter. This should be a member of the
NV_ENC_ CAPS enum.

5. Call NvEncGetEncodeCaps to determine support for the required attribute. Refer
to NV_ENC CAPS enum definition in the API reference for interpretation of
individual capability attributes.

6. Select a desired preset GUID and fetch the corresponding Preset Encode
Configuration as described in Section 3.3.

7. The client can then override any parameters from the preset NV_ENC CONFIG
according to its requirements. The client should pass the fine-tuned NV ENC CONFIG
structure using
NV_ENC INITIALIZE PARAMS::encodeConfig::encodeCodecConfig pointer.

8. Additionally, the client should also pass the selected preset GUID through
NV_ENC INITIALIZE PARAMS::presetGUID. This is to allow the NVIDIA Video
Encoder interface to program internal parameters associated with the encoding
session to ensure that the encoded output conforms to the client’s request. Note that
passing the preset GUID here will not override the fine-tuned parameters.

3.8.3 Setting encode session attributes

Once all Encoder settings have been finalized, the client should populate a
NV_ENC_CONFIG structure, and use it as an input to NvEncInitializeEncoder in order
to freeze the Encode settings for the current encodes session. Some settings such as rate
control mode, average bitrate, resolution etc. can be changed on-the-fly.

The client is required to explicitly specify the following while initializing the Encode
Session:

3.8.3.1 Mode of operation

The client should set NV ENC INITIALIZE PARAMS::enableEncodeAsync to 1 if it
wants to operate in asynchronous mode and 0 for operating in synchronous mode.

Asynchronous mode encoding is only supported on Windows 7 and later. Refer to Chapter 6
for more detailed explanation.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 9

3.8.3.2 Picture-type decision

If the client wants to send the input buffers in display order, it must set enablePTD =
1.

If the client wants to send the input buffers in encode order, it must set enablepPTD = 0,
and must specify

e NV ENC PIC PARAMS::pictureType
e NV _ENC PIC PARAMS H264/NV_ENC PIC PARAMS HEVC::displayPOCSyntax

e NV _ENC PIC_PARAMS H264/NV_ENC_PIC PARAMS HEVC::refPicFlag

3.9 CREATING RESOURCES REQUIRED TO HOLD
INPUT/OUTPUT DATA

Once the encode session is initialized, the client should allocate buffers to hold the
input/output data.

The client may choose to allocate input buffers through NVIDIA Video Encoder
Interface by calling NvEncCreateInputBuffer APL In this case, the client is responsible
to destroy the allocated input buffers before closing the encode session. It is also the
client’s responsibility to fill the input buffer with valid input data according to the
chosen input buffer format.

The client should allocate buffers to hold the output encoded bit stream using the
NvEncCreateBitstreamBuffer APL It is the client’s responsibility to destroy these
buffers before closing the encode session.

Alternatively, in scenarios where the client cannot or does not want to allocate input
buffers through the NVIDIA Video Encoder Interface, it can use any externally allocated
DirectX resource as an input buffer. However, the client has to perform some simple
processing to map these resources to resource handles that are recognized by the
NVIDIA Video Encoder Interface before use. The translation procedure is explained in
Section 4.1.2.

If the client has used a CUDA device to initialize the encoder session, and wishes to use
input buffers NOT allocated through the NVIDIA Video Encoder Interface, the client is
required to use buffers allocated using the cuMemalloc family of APIs. The NVIDIA
Video Encoder Interface version 7.0 only supports CUdevicePtr as a supported input
format. Support for CUarray inputs will be added in future versions.

Note: The client should allocate at least (1 + Ns) input and output buffers, where Ns is
the number of B frames between successive P frames.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 10

3.10 RETRIEVING SEQUENCE PARAMETERS

After configuring the encode session, the client can retrieve the sequence parameter
information (SPS) at any time by calling NvEncGetSequenceParams. It is the client’s
responsibility to allocate and eventually de-allocate a buffer of size MAX SEQ HDR_LEN
to hold the sequence parameter information.

By default, SPS/PPS data will be attached to every IDR frame. However, the client can
request the encoder to generate SPS/PPS data on demand as well. To accomplish this, set
NV_ENC_PIC_PARAMS::encodePicFlags = NV_ENC_PIC_FLAG OUTPUT SPSpPS. The
output frame generated for the current input will then include SPS/PPS.

The client can call NvEncGetSequenceParams at any time, after the encoder has been
initialized (NvEncInitializeEncoder) and the session is active.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 11

ENCODING THE VIDEO

STREAM

Once the encode session is configured and input/output buffers are allocated, the client
can start streaming the input data for encoding. The client is required to pass a handle to
a valid input buffer and a valid bit stream (output) buffer to the NVIDIA Video Encoder
Interface for encoding an input picture.

4.1 PREPARING INPUT BUFFERS FOR ENCODING

There are two methods to allocate and pass input buffers to the video encoder.

4.1.1 Input buffers allocated through NVIDIA Video
Encoder Interface

If the client has allocated input buffers through NvEncCreateInputBuffer, the client
needs to fill valid input data before using the buffer as input for encoding. For this, the
client should call NvEncLockInputBuffer to get a CPU pointer to the input buffer. Once
the client has filled input data, it should call NvUnlockInputBuffer. The input buffer
should be passed to the encoder only after unlocking it. Any input buffers should be
unlocked by calling NvUnlockInputBuffer before destroying/reallocating them.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 12

4.1.2 Input buffers allocated externally

In order to pass externally allocated buffers to the encoder, follow these steps:

1.

Populate NV_ENC REGISTER RESOURCE with attributes of the externally allocated
buffer.

Call NvEncRegisterResource with the NV_ENC REGISTER RESOURCE populated in
the above step.

NvEncRegisterResource returns an opaque handle in
NV_ENC_REGISTER_RESOURCE::registeredResource which should be saved.

Call NvEncMapInputResource with the handle returned above.

The mapped handle will then be available in
NV_ENC MAP INPUT RESOURCE::mappedResource.

The client should use this mapped handle
(NV_ENC MAP INPUT RESOURCE::mappedResource) as the input buffer handle
INNV_ENC PIC PARAMS.

After the client has finished using the resource NvEncUnmapInputResource must be
called.

The client must also call NvEncUnregisterResource with the handle returned by
NvEncRegisterResource before destroying the registered resource.

The mapped resource handle
(NV_ENC MAP INPUT RESOURCE::mappedResource) should not be used for any
other purpose outside the NVIDIA Video Encoder Interface while it is in mapped
state. Such usage is not supported and may lead to undefined behavior.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 13

4.2 CONFIGURING PER-FRAME ENCODE
PARAMETERS

The client should populate Nv_ENC PIC PARAMS with the parameters to be applied to
the current input picture. The client can do the following on a per-frame basis.

4.2.1 Forcing current frame to be encoded as intra
frame

To force the current frame as intra (I) frame, set

NV_ENC PIC PARAMS::encodePicFlags = NV_ENC_PIC_FLAG FORCEINTRA

4.2.2 Forcing current frame to be used as a reference
frame

To force the current frame to be used as a reference frame, set

NV_ENC_PIC PARAMS H264/NV_ENC PIC PARAMS HEVC::refPicFlag = 1

4.2.3 Forcing current frame to be used as an IDR frame

To force the current frame to be encoded as IDR frame, set

NV_ENC PIC PARAMS: :encodePicFlags = NV_ENC PIC_FLAG_FORCEIDR

4.2.4 Requesting generation of sequence parameters

To include SPS/PPS along with the currently encoded frame, set

NV_ENC_PIC_PARAMS::encodePicFlags = NV_ENC PIC FLAG _OUTPUT SPSPPS

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 14

4.3 SUBMITTING INPUT FRAME FOR ENCODING

The client should call NvEncEncodePicture to perform encoding.

The input picture data will be taken from the specified input buffer, and the encoded bit
stream will be available in the specified bit stream (output) buffer once the encoding
process completes.

Codec-agnostic parameters such as timestamp, duration, input buffer pointer, etc. are
passed via the structure Nv _ENC PIC PARAMS while codec-specific parameters are
passed via the structure NV _ENC PIC PARAMS H264/NV_ENC PIC_ PARAMS HEVC
depending upon the codec in use.

The client should specify the codec-specific structure in Nv_ENC PIC PARAMS using the
NV_ENC PIC PARAMS::codecPicParams member.

4.4 RETRIEVING ENCODED OUTPUT

Upon completion of the encoding process for an input picture, the client is required to
call NvEncLockBitstreanm to get a CPU pointer to the encoded bit stream. The client can
make a local copy of the encoded data or pass the CPU pointer for further processing
(e.g. to a media file writer).

The CPU pointer will remain valid until the client calls NvUnlockBitstreamBuffer. The
client should call NvUnlockBitstreamBuffer after it completes processing the output
data.

The client must ensure that all bit stream buffers are unlocked before destroying/de-
allocating them (e.g. while closing an encode session) or even before reusing them again
as output buffers for subsequent frames.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 15

END OF ENCODING

5.1 NOTIFYING THE END OF INPUT STREAM

To notify the end of input stream, the client must call NvEncEncodePicture with the
flag NV_ENC PIC PARAMS:: encodePicFlags set to NV ENC FLAGS EOS and all other
members of NV_ENC pPIC PARAMS set to 0. No input buffer is required while calling
NvEncEncodePicture for EOS notification.

EOS notification effectively flushes the encoder. This can be called multiple times in a
single encode session. This operation however must be done before closing the encode
session.

5.2 RELEASING RESOURCES

Once encoding completes, the client should destroy all allocated resources.

The client should call NvEncDestroyInputBuffer if it had allocated input buffers
through the NVIDIA Video Encoder Interface. The client must ensure that input buffer
is first unlocked by calling NvUnlockInputBuffer before destroying it.

The client should call NvEncDestroyBitStreamBuffer to destroy each bitstream buffer
it had allocated. The client must ensure that the bitstream buffer is first unlocked by
calling NvEncUnlockBitstream before destroying it.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 16

5.3 CLOSING ENCODE SESSION

The client should call NvEncDestroyEncoder to close the encoding session. The client
should ensure that all resources tied to the encode session being closed have been
destroyed before calling NvEncDestroyEncoder. These include input buffers, bit stream

buffers, SPS/PPS buffer, etc.

It must also ensure that all registered events are unregistered, and all mapped input
buffer handles are unmapped.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 17

MODES OF OPERATION

The NVIDIA Video Encoder Interface supports the following two modes of operation.

6.1 ASYNCHRONOUS MODE (WINDOWS 7 AND
ABOVE)

This mode of operation is used for asynchronous output buffer processing. For this
mode, the client allocates an event object and associates the event with an allocated
output buffer. This event object is passed to the NVIDIA Encoder Interface as part of the
NvEncEncodePicture APIL The client can wait on the event in a separate thread. When
the event is signaled, the client calls the NVIDIA Video Encoder Interface to copy output
bitstream produced by the encoder. Note that the encoder support asynchronous mode
of operation only for Windows 7 and above. In Linux, ONLY synchronous mode is
supported (refer to Section 6.2.)

The client should set the flag NV ENC INITIALIZE PARAMS::enableEncodeAsync to 1
to indicate that it wants to operate in asynchronous mode. After creating the event
objects (one object for each output bitstream buffer allocated), the client needs to register
them with the NVIDIA Video Encoder Interface using the NvEncRegisterAsyncEvent.
The client is required to pass a bitstream buffer handle and the corresponding event
handle as input to NvEncEncodePicture. The NVIDIA Video Encoder Interface will
signal this event when the hardware encoder finishes encoding the current input data.
The «client can then call NvEncLockBitstream in non-blocking mode
NV_ENC LOCK BITSTREAM::doNotWait flag setto 1 to fetch the output data.

The client should call NvEncUnregisterAsyncEvent to unregister the Event handles
before destroying the event objects. Whenever possible, NVIDIA recommends using the
asynchronous mode of operation instead of synchronous mode.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 18

A step-by-step control flow for asynchronous mode is as follows:

1.

When working in asynchronous mode, the output sample must consist of an event +
output buffer and clients must work in multi-threaded manner (D3D9 device should
be created with MULTITHREADED flag).

The output buffers are allocated using NvEncCreateBitstream APL. The NVIDIA
Video Encoder Interface will return an opaque pointer to the output memory in
NV_ENC CREATE BITSTREAM BUFFER::bitstreambuffer. This opaque output
pointer should be wused in NvEncEncodePicture and NvEncLockBitsteam/
NvEncUnlockBitsteam calls. For accessing the output memory using CPU, client
must call NvEncLockBitsteam APIL The number of IO buffers should be at least 4 +
number of B frames.

The events are windows event handles allocated using Windows’ CreateEvent API
and registered using the function NvEncRegisterAsyncEvent before encoding. The
registering of events is required only once per encoding session. Clients must
unregister the events using NvEncUnregisterAsyncEvent before destroying the
event handles. The number of event handles must be same as number of output
buffers as each output buffer is associated with an event.

Client must create a secondary thread in which it can wait on the completion event
and copy the bitstream data from the output sample. Client will have two threads:
one is the main application thread which submits encoding work to NVIDIA
Encoder while secondary thread waits on the completion events and copies the
compressed bitstream data from the output buffer.

Client must send the event and output buffer in
NV_ENC PIC PARAMS::outputBitstream and NV_ENC PIC PARAMS::
completionEvent Fields, respectively, as part of NvEncEncodePicture API call.

Client should then wait on the event on the secondary thread in the same order in
which it has called NvEncEncodePicture calls irrespective of input buffer re-
ordering (encode order != display order). NVIDIA Encoder takes care of the
reordering in case of B frames and should be transparent to the encoder clients.

When the event gets signalled client must send down the output buffer of sample
event it was waiting on in NV_ENC LOCK BITSTREAM::outputBitstream field as
part of NvEncLockBitstream call.

The NVIDIA Encoder Interface returns a CPU pointer and bitstream size in bytes as
part of the NV_ENC LOCK BITSTREAM.

After copying the bitstream data, client must call NvEncUnlockBitstream for the
locked output bitstream buffer.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 19

Note:

1. The client will receive the event's signal and output buffer in the same order in
which they were queued.

2. The NV_ENC_LOCK_BITSTREAM: :pictureType notifies the output picture type to the
clients.

3. Both, the input and output sample (output buffer and the output completion event)
are free to be reused once the NVIDIA Video Encoder Interface has signalled the
event and the client has copied the data from the output buffer.

6.2 SYNCHRONOUS MODE

This mode of operation is used for synchronous output buffer processing. In this mode
the client makes a blocking call to the NVIDIA Video Encoder Interface to retrieve the
output bitstream data from the encoder. The client sets the flag
NV_ENC INITIALIZE PARAMS::enableEncodeAsync to 0 for operation in synchronous
mode. The client then must call NvEncEncodePicture without setting a completion
event handle. The client must call NvEncLockBitstream with flag
NV_ENC LOCK BITSTREAM::doNotWait set to 0, so that the lock call blocks until the
hardware encoder finishes writing the output bitstream. The client can then operate on
the generated bitstream data and call NvEncUnlockBitstream. This is the only mode
supported on Linux.

6.3 THREADING MODEL

In order to get maximum performance for encoding, the encoder client should create a
separate thread to wait on events or when making any blocking calls to the encoder
interface.

The client should avoid making any blocking calls from the main encoder processing
thread. The main encoder thread should be used only for encoder initialization and to
submit work to the HW Encoder using NvEncEncodePicture API, which is non-
blocking.

Output buffer processing, such as waiting on the completion event in asynchronous
mode or calling the blocking APT's such as
NvEncLockBitstream/NvEncUnlockBitstream in synchronous mode, should be done
in the secondary thread. This ensures that the main encoder thread is never blocked
except when the encoder client runs out of resources.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 20

It is also recommended to allocate a large number of input and output buffers in order to
avoid resource hazards and improve overall encoder throughput.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 21

MOTION-ESTIMATION-ONLY

NVENC can be used as a hardware accelerator to perform motion search and generate
motion vectors and mode information only. The resulting motion vectors or mode
decisions can used, for example, in motion compensated filtering or for supporting other
codecs not fully supported by NVENC or simply as motion vector hints for a custom
encoder. The procedure to use the feature is explained below.

7.1 QUERY MOTION-ESTIMATION ONLY MODE
CAPABILITY

Before using the motion-estimation (ME) only mode, the client should explicitly query
the capability of the encoder to support ME only mode. For this, the client should do the
following:

1. Specify the capability attribute as NV ENC CAPS SUPPORT MEONLY MODE to query
through the NV_ENC CAPS PARAM:capsToQuery parameter.

2. The client should call NvEncGetEncoderCaps to determine support for the required
attribute.

NV_ENC_CAPS SUPPORT MEONLY MODE indicates support of ME only mode in hardware.

0: ME only mode not supported.

1: ME only mode supported.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 22

7.2 CREATE RESOURCES FOR INPUT/OUTPUT
DATA

The client should allocate at least one buffer for the input picture by calling
NvEncCreateInputBuffer API, and should also allocate one buffer for the reference
frame by using NvEncCreateInputBuffer APL The client can refer to Section 4.1.2 of
the programming guide if they want to use any externally allocated DirectX resource as
input buffer. The client is responsible for filling in valid input data.

After input resources are created, client needs to allocate resources for the output data
by using NvEncCreateMvBuffer APL

7.3 RUN MOTION ESTIMATION

The Client should create an instance of NV ENC_MEONLY PARAMS.

The pointers of the input picture buffer and the reference frame buffer need to be fed to
NV_ENC MEONLY PARAMS::inputBuffer and
NV_ENC MEONLY PARAMS::referenceFrame respectively.

The pointer returned by NvEncCreateMVBuffer API in the
NV_ENC CREATE MV BUFFER::mvBuffer field needs to be fed to
NV_ENC MEONLY PARAMS::mvBuffer.

In order to operate in asynchronous mode, the client should create an event and pass
this event in NV_ENC MEONLY PARAMS::completionEvent. This event will be signaled
upon completion of motion estimation. Each output buffer should be associated with a
distinct event pointer.

Client should call NvEncRunMotionEstimationOnly to run the motion estimation on
hardware encoder.

For asynchronous mode client should wait for motion estimation completion signal
before reusing output buffer and application termination.

Client must lock NV _ENC CREATE MV BUFFER::mvBuffer using NvEncLockBitstream
to get the motion vector data.

Finally, NV ENC LOCK BITSTREAM::bitstreamBufferPtr which contains the output
motion vectors should be typecast to NV_ENC H264 MV DATA*/NV_ENC HEVC MV DATA*
for H.264/HEVC respectively. Client should then unlock
NV_ENC_CREATE MV BUFFER::mvBuffer by calling NvEncUnlockBitstream.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 23

7.4 RELEASE THE CREATED RESOURCES

Once the wusage of motion estimation is done, the client should call
NvEncDestroyInputBuffer to destroy the input picture buffer and the reference frame
buffer and should call NvEncDestroyMvBuffer to destroy the motion vector data buffer.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 24

ADVANCED FEATURES AND

SETTINGS

8.1 LOOK-AHEAD

Look-ahead improves the video encoder’s rate control accuracy by enabling the encoder
to buffer the specified number of frames, estimate their complexity and allocate the bits
appropriately among these frames proportional to their complexity.

To use this feature, the client must follow these steps:

1.

The availability of the feature in the current hardware can be queried using
NvEncGetEncodeCaps and checking for NV ENC CAPS SUPPORT LOOKAHEAD.

Look-ahead needs to be enabled during initialization by setting
NV _ENC INITIALIZE PARAMS::encodeconfig-

>rcParams.enableLookahead =1.

The number of frames to be looked aheadshould be set in
NV_ENC_INITIALIZE PARAMS::encodeconfig->rcParams.lookaheadDepth which
can be up to 32.

By default, look-ahead enables adaptive insertion of intra frames and B frames. They
can however be disabled by setting

NV_ENC_INITIALIZE PARAMS::encodeconfig->rcParams.disableladapt and/or
NV_ENC INITIALIZE PARAMS::encodeconfig->rcParams.disableBadapt to 1.

When the feature is enabled, frames are queued up in the encoder and hence
NvEncEncodePicture will return NV ENC ERR NEED MORE INPUT until the encoder
has sufficient number of input frames to satisfy the look-ahead requirement. Frames
should be continuously fed in until NvEncEncodePicture returns NV _ENC SUCCESS.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 25

8.2 ADAPTIVE QUANTIZATION (AQ)

This feature improves visual quality by adjusting encoding QP (on top of QP evaluated
by the rate control algorithm) based on spatial and temporal characteristics of the
sequence. The current SDK support two flavors of AQ which are explained as follows:

8.2.1 Spatial AQ

Spatial AQ mode adjusts the QP values based on spatial characteristics of the frame.
Since the low complexity flat regions are visually more perceptible to quality differences
than high complexity detailed regions, extra bits are allocated to flat regions of the frame
at the cost of the regions having high spatial detail. Although spatial AQ improves the
perceptible visual quality of the encoded video, the required bit redistribution results in
PSNR drop in most of the cases. Therefore, during PSNR-based evaluation, this feature
should be turned off.

To use spatial AQ, follow these steps in your application.

» Spatial AQcan be enabled during initialization by setting
NV_ENC INITIALIZE PARAMS::encodeconfig->rcParams. enableAQ = 1.

» The intensity of QP adjustment can be controlled by setting
NV _ENC INITIALIZE PARAMS::encodeconfig->rcParams.aqStrength
which ranges from 1 (least aggressive) to 15 (most aggressive). If not set, strength is
auto selected by driver.

8.2.2 Temporal AQ

Temporal AQ tries to adjust encoding QP (on top of QP evaluated by the rate control
algorithm) based on temporal characteristics of the sequence. Temporal AQ improves
the quality of encoded frames by adjusting QP for regions which are constant or have
low motion across frames but have high spatial detail, such that they become better
reference for future frames. Allocating extra bits to such regions in reference frames is
better than allocating them to the residuals in referred frames because it helps improve
the overall encoded video quality. If majority of the region within a frame has little or no
motion, but has high spatial details (e.g. high-detail non-moving background) enabling
temporal AQ will benefit the most.

One of the potential disadvantages of temporal AQ is that enabling temporal AQ may
result in high fluctuation of bits consumed per frame within a GOP. I/P-frames will
consume more bits than average P-frame size and B-frames will consume lesser bits.
Although target bitrate will be maintained at the GOP level, the frame size will fluctuate
from one frame to next within a GOP more than it would without temporal AQ. If a
strict CBR profile is required for every frame size within a GOP, it is not recommended
to enable temporal AQ. Additionally, since some of the complexity estimation is

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 26

performed in CUDA, there may be some performance impact when temporal AQ is
enabled.

To use temporal AQ, follow these steps in your application.

» Query the availability of temporal AQ for the current hardware by calling the API
NvEncGetEncodeCaps and checking for NV_ENC CAPS SUPPORT TEMPORAL AQ.

» If supported, temporal AQ can be enabled during initialization by setting
NV _ENC INITIALIZE PARAMS::encodeconfig->rcParams.enableTemporalAQ
= 1.

8.3 HIGH BIT DEPTH ENCODING

All NVIDIA GPUs support 8-bit encoding (RGB/YUV input with 8-bit precision). Some
of the NVIDIA GPUs support high-bit-depth HEVC encoding (HEVC main-10 profile
with 10-bit input precision). To encode 10-bit content the following steps are to be
followed.

1. The availability of the feature can be queried using NvEncGetEncodeCaps and
checking for NV_ENC CAPS SUPPORT 10BIT ENCODE.

2. Create the encoder session with NV_ENC HEVC PROFILE MAIN10 GUID.

3. During encoder initialization, set

encodeConfig->encodeCodecConfig.hevcConfig.pixelBitDepthMinus8 = 2
4. The input surface format needs be set to

NV_ENC BUFFER FORMAT YUV420 10BIT OR NV _ENC BUFFER FORMAT ABGR

10 OR NV_ENC BUFFER FORMAT ARGB10 or

NV_ENC BUFFER FORMAT YUV444 10BIT, depending upon nature of input.

5. Other encoding parameters such as preset, rate control mode etc. can be set as
desired.

8.4 ENCODER FEATURES USING CUDA

Although the core video encoder hardware on GPU is completely independent of CUDA
cores or graphics engine on the GPU, following encoder features internally use CUDA
for hardware acceleration. Note that the impact of enabling these features on overall
CUDA or graphics performance is minimal and this list is provided purely for
information purposes.

» Two-pass rate control modes for high quality presets.
» Look-ahead

» All adaptive quantization modes.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 27

» Encoding with inputs in RGB formats.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 28

RECOMMENDED NVENC

SETTINGS

NVIDIA hardware video encoder is used for several purposes in various applications.
Some of the common applications include: Video-recording (archiving), game-casting
(broadcasting/multicasting video gameplay online), transcoding (live and video-on-
demand) and streaming (games or live content). Each of these use-cases has its unique
requirements for quality, bitrate, latency tolerance, performance constraints etc.
Although NVIDIA Encoder Interface provides flexibility to control the settings with a
large number of API’s, below table can be used as a general guideline for recommended
settings for some of the popular use-cases to deliver the best encoded bit stream quality.
These recommendations are particularly applicable to GPUs based on second generation
Maxwell architecture beyond. For earlier GPUs (Kepler and first generation Maxwell), it
is recommended that clients use the Table 1 as a starting point and adjust the settings to
achieve appropriate performance-quality tradeoff.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 29

Table 1. Recommended NVENC settings for various use-cases

Use-case

Recommended settings for optimal quality and performance

Recording/Archiving

High Quality preset

Rate control mode = VBR

Very large VBV buffer size (4 seconds)
B Frames'

Finite GOP length (2 seconds)

Adaptive quantization? (AQ) enabled

Game-casting &
cloud transcoding

High Quality preset

Rate control mode = Two-pass CBR

Look-ahead (with dynamically inserted | and B frames)
Medium VBV buffer size (1 second)

B Frames'

Finite GOP length (2 seconds)

Adaptive quantization? (AQ) enabled

Low-latency use cases
like game-streaming,
video conferencing etc.

Low-Latency High Quality preset

Rate control mode = Two-pass CBR
Very low VBV buffer size (Single frame)
No B Frames

Infinite GOP length

Adaptive quantization? (AQ) enabled

V VVVVY| VVVVVVVY|V VVVVYY

1 Recommended for low motion games and natural video. It is observed that 3 B frames results in most optimal quality

2 Available only in second generation Maxwell GPUs and above. Temporal AQ in general gives better quality than Spatial

AQ but is computationally complex.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 30

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of
HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and
other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2016 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVI ﬁIA@

